Forget Pi Day. We should be celebrating Tau Day

As a physics reporter and lover of mathematics, I won’t be celebrating Pi Day this year. That’s because pi is wrong.

I don’t mean that the value is incorrect. Pi, known by the symbol π, is the number you get when you divide a circle’s circumference by its diameter: 3.14159… and so on without end. But, as some mathematicians have argued, the mathematical constant was poorly chosen, and students worldwide continue to suffer as a result.

A longtime fixture of high school math classes, pi has inspired books, art (SN Online: 5/4/06) and enthusiasts who memorize it to tens of thousands of decimal places (SN: 4/7/12, p. 12). But some contend that replacing pi with a different mathematical constant could make trigonometry and other math subjects easier to learn. These critics — including myself — advocate for an arguably more elegant number equal to 2π: 6.28318…. Sometimes known as tau, or the symbol τ, the quantity is equal to a circle’s circumference divided by its radius, not its diameter.

This idea is not new. In 2001, mathematician Bob Palais of the University of Utah in Salt Lake City published an article in the Mathematical Intelligencer titled “ π is wrong!” The topic gained more attention in 2010 with The Tau Manifesto, posted online by author and educator Michael Hartl. But the debate tends to reignite every year on March 14, which is celebrated as Pi Day for its digits: 3/14.
The simplest way to see the failure of pi is to consider angles, which in mathematics are typically measured in radians. Pi is the number of radians in half a circle, not a whole circle. That makes things confusing: For example, the angle at the tip of a slice of pizza — an eighth of a pie — isn’t π/8, but π/4. In contrast, using tau, the pizza-slice angle is simply τ/8. Put another way, tau is the number of radians in a full circle.

That factor of two is a big deal. Trigonometry — the study of the angles and lines found in shapes such as triangles — can be a confusing whirlwind for students, full of blindly plugging numbers into calculators. That’s especially true when it comes to sine and cosine, two important functions in trigonometry. Many trigonometry problems involve calculating the sine or cosine of an angle. When graphed, the two functions look like a series of wiggles, shaped a bit like an “S” on its side, that repeat the same values every 2π. That means pi covers only half of an S. Tau, on the other hand, covers the full wiggle, a more intuitive measure.

Pi has become so embedded in mathematics that it could be hard to excise. A more practical approach may be to introduce tau as a teaching tool alongside pi, rather than a replacement. Education is where tau’s impact is most likely to be felt: Professional scientists and mathematicians can comfortably handle the factors of two that crop up with pi in equations.

You might argue that multiplying by two isn’t that hard, even for students. But it isn’t the arithmetic that concerns me. Trigonometry is notorious for creating a divide between the math-fluent and math-phobic. But helping more people understand and enjoy mathematics isn’t some pie-in-the-sky fantasy. Everyone is capable of doing math. We just need to work smarter, and speak more clearly, to help those who struggle.

So here’s to June 28 — Tau Day.

The great Pacific garbage patch may be 16 times as massive as we thought

We’re going to need a bigger trash can.

A pooling of plastic waste floating in the ocean between California and Hawaii contains at least 79,000 tons of material spread over 1.6 million square kilometers, researchers report March 22 in Scientific Reports. That’s the equivalent to the mass of more than 6,500 school buses. Known as the great Pacific garbage patch, the hoard is four to 16 times as heavy as past estimates.

About 1.8 trillion plastic pieces make up the garbage patch, the scientists estimate. Particles smaller than half a centimeter, called microplastics, account for 94 percent of the pieces, but only 8 percent of the overall mass. In contrast, large (5 to 50 centimeters) and extra-large (bigger than 50 centimeters) pieces made up 25 percent and 53 percent of the estimated patch mass.
Much of the plastic in the patch comes from humans’ ocean activities, such as fishing and shipping, the researchers found. Almost half of the total mass, for example, is from discarded fishing nets. A lot of that litter contains especially durable plastics, such as polyethylene and polypropylene, which are designed to survive in marine environments.
To get the new size and mass estimates, Laurent Lebreton of the Ocean Cleanup, a nonprofit foundation in Delft, the Netherlands, and his colleagues trawled samples from the ocean surface, took aerial images and simulated particle pathways based on plastic sources and ocean circulation.
Aerial images provided more accurate tallies and measurements of the larger plastic pieces, the researchers write. That could account for the increase in mass over past estimates, which relied on trawling data and images taken from boats, in addition to computer simulations. Another possible explanation: The patch grew — perhaps driven by an influx of debris from the 2011 tsunami that hit Japan and washed trash out to sea (SN: 10/28/17, p. 32).

The mystery of Christiaan Huygens’ flawed telescopes may have been solved

17th century scientist Christiaan Huygens set his sights on faraway Saturn, but he may have been nearsighted.

Huygens is known, in part, for discovering Saturn’s largest moon, Titan, and deducing the shape of the planet’s rings. But by some accounts, the Dutch scientist’s telescopes produced fuzzier views than others of the time despite having well-crafted lenses.

That may be because Huygens needed glasses, astronomer Alexander Pietrow proposes March 1 in Notes and Records: the Royal Society Journal of the History of Science.
To make his telescopes, Huygens combined two lenses, an objective and an eyepiece, positioned at either end of the telescope. Huygens experimented with different lenses to find combinations that, to his eye, created a sharp image, eventually creating a table to keep track of which combinations to use to obtain a given magnification. But when compared with modern-day knowledge of optics, Huygens’ calculations were a bit off, says Pietrow, of the Leibniz Institute for Astrophysics Potsdam in Germany.

One possible explanation: Huygens selected lenses based on his flawed vision. Historical records indicate that Huygens’ father was nearsighted, so it wouldn’t be surprising if Christiaan Huygens also suffered from the often-hereditary affliction.

Assuming that’s the reason for the mismatch, Pietrow calculates that Huygens had 20/70 vision: What someone with normal vision could read from 70 feet away, Huygens could read only from 20 feet. If so, that could be why Huygens’ telescopes never quite reached their potential.

50 years ago, atomic testing created otter refugees

Sea otters restocked in old home

When the [Atomic Energy Commission] first cast its eye on the island of Amchitka as a possible site for the testing of underground nuclear explosions, howls of anguish went up; the island is part of the Aleutians National Wildlife Refuge, created to preserve the colonies of nesting birds and some 2,500 sea otters that live there…— Science News, November 9, 1968

Update
The commission said underground nuclear testing would not harm the otters, but the fears of conservationists were well-founded: A test in 1971 killed more than 900 otters on the Aleutian island.
Some otters remained around Amchitka, but 602 otters were relocated in 1965–1972 to Oregon, southeast Alaska, Washington and British Columbia — areas where hunting had wiped them out. All but the Oregon population thrived, and today more than 25,000 otters live near the coastal shores where once they were extinct.

“They were sitting on the precipice,” says James Bodkin, who is a coastal ecologist at the U.S. Geological Survey. “It’s been a great conservation story.”

Martian soil may have all the nutrients rice needs

THE WOODLANDS, TEXAS — Martian dirt may have all the necessary nutrients for growing rice, one of humankind’s most important foods, planetary scientist Abhilash Ramachandran reported March 13 at the Lunar and Planetary Science Conference. However, the plant may need a bit of help to survive amid perchlorate, a chemical that can be toxic to plants and has been detected on Mars’ surface (SN: 11/18/20).

“We want to send humans to Mars … but we cannot take everything there. It’s going to be expensive,” says Ramachandran, of the University of Arkansas in Fayetteville. Growing rice there would be ideal, because it’s easy to prepare, he says. “You just peel off the husk and start boiling.”
Ramachandran and his colleagues grew rice plants in a Martian soil simulant made of Mojave Desert basalt. They also grew rice in pure potting mix as well as several mixtures of the potting mix and soil simulant. All pots were watered once or twice a day.

Rice plants did grow in the synthetic Mars dirt, the team found. However, the plants developed slighter shoots and wispier roots than the plants that sprouted from the potting mix and hybrid soils. Even replacing just 25 percent of the simulant with potting mix helped heaps, they found.

The researchers also tried growing rice in soil with added perchlorate. They sourced one wild rice variety and two cultivars with a genetic mutation — modified for resilience against environmental stressors like drought — and grew them in Mars-like dirt with and without perchlorate (SN: 9/24/21).

No rice plants grew amid a concentration of 3 grams of perchlorate per kilogram of soil. But when the concentration was just 1 gram per kilogram, one of the mutant lines grew both a shoot and a root, while the wild variety managed to grow a root.

The findings suggest that by tinkering with the successful mutant’s modified gene, SnRK1a, humans might eventually be able to develop a rice cultivar suitable for Mars.

Biologists are one step closer to creating snake venom in the lab

SAN DIEGO — Labs growing replicas of snakes’ venom glands may one day replace snake farms.

Researchers in the Netherlands have succeeded in growing mimics of venom-producing glands from multiple species of snakes. Stem cell biologist Hans Clevers of the Hubrecht Institute in Utrecht, the Netherlands, reported the creation of these organoids on December 10 at a joint meeting of the American Society for Cell Biology and the European Molecular Biology Organization.

If scientists can extract venom from the lab-grown glands, that venom might be used to create new drugs and antidotes for bites including from snakes that aren’t currently raised on farms.

Up to 2.7 million people worldwide are estimated to be bitten by venomous snakes each year. Between about 81,000 to 138,000 people die as a result of the bite, and as many as roughly 400,000 may lose limbs or have other disabilities, according to the World Health Organization.
Antivenoms are made using venom collected from snakes usually raised on farms. Venom is injected into other animals that make antibodies to the toxins. Purified versions of those antibodies can help a bitten person recover, but must be specific to the species of snake that made the bite. “If it’s a fairly rare or local snake, chances are there would be no antidote,” Clevers says.

Three postdoctoral researchers in Clevers’ lab wanted to know if they could make organoids — tissues grown from stem cells to have properties of the organs they mimic — from snakes and other nonmammalian species. The researchers started with Cape coral snakes (Aspidelaps lubricus) that were dissected from eggs just before hatching. Stem cells taken from the unhatched snakes grew into several different types of organoids, including some that make venom closely resembling the snake’s normal venom, Clevers reported at the meeting.

His team has produced venom-gland organoids from at least seven species of snakes. The organoids have survived in the lab for up to two years so far.

Clevers and colleagues hope to harvest venom from the organoids, which produce more highly concentrated venom than snakes usually make. “It’s probably going to be easier than milking a snake,” he says.

Satellites make mapping hot spots of ammonia pollution easier

Satellites may be a more accurate way to track smog-producing ammonia.

It’s notoriously tricky to pinpoint accurate numbers for ammonia gas emissions from sources such as animal feedlots and fertilizer plants. But new maps, generated from infrared radiation measurements gathered by satellites, reveal global ammonia hot spots in greater detail than before. The new data suggest that previous estimates underestimate the magnitude of these emissions, researchers report December 5 in Nature.

In the atmosphere, ammonia, which contains nitrogen, can help form tiny particles that worsen air quality and harm human health. The research could help keep tabs on who’s emitting how much, to make sure that factories and farms are meeting environmental standards.
Emissions are usually estimated by adding up output from individual known sources of activity, but those calculations are only as good as the data that go into them. Ammonia sticks around only hours to a few days in the atmosphere, so on-the-ground measurements vary a lot even in the same place, says coauthor Martin Van Damme, an atmospheric scientist at the Université Libre de Bruxelles in Belgium.

“There’s so much uncertainty in ammonia emissions,” says Daven Henze, a mechanical engineer at the University of Colorado Boulder who wasn’t part of the research. Other scientists, including his research group, have estimated ammonia releases using satellite data before. But these new maps rely on a more detailed dataset and have substantially better resolution, Henze says — fine enough that the study authors were able to link areas of high emissions to specific factories or farms.
The new maps show 248 nitrogen emission hot spots across the globe at a resolution of about a kilometer. Eighty-three of those hot spots arose from agricultural activity that involved high numbers of cows, pigs and chickens, such as a site in Colorado that overlapped on satellite imagery maps with two big cattle feedlots. Ammonia emissions from feedlots come largely from livestock waste. Another 158 sites were affected by industrial emissions — mostly from sites that produced ammonia-based fertilizer, such as in Marvdasht, Iran. Six hot spots couldn’t be pinned to specific activity.
Ammonia is also emitted naturally, from volcanoes or seabird colonies. But most of those sources were too weak or not concentrated enough to show up as hot spots in the data. Lake Natron in Tanzania is the one exception — its mud flats show up as an ammonia-releasing hot spot, perhaps due to decaying algae. But it’s not clear why other lakes with similar mud flats didn’t. Some natural sources may have gone undetected because of where they were located — in places with heavy cloud cover that obscured the data, or where turbulent air dissipated ammonia especially quickly, Van Damme suggests.

Some areas with particularly high overall ammonia emissions from biomass burning or fertilizer, such as West Africa and the Indus Valley in Pakistan and northern India, didn’t reveal specific hot spots, either, the researchers report.

U.S. fentanyl deaths are rising fastest among African-Americans

Since people in the United States began dying in the fentanyl-related drug overdose epidemic, whites have been hit the hardest. But new data released March 21 by the Centers for Disease Control and Prevention show that African-Americans and Hispanics are catching up.

Non-Hispanic whites still experience the majority of deaths involving fentanyl, a synthetic opioid. But among African-Americans and Hispanics, death rates rose faster from 2011 to 2016. Whites experienced a 61 percent annual increase, on average, while the rate rose 140.6 percent annually for blacks and 118.3 percent per year for Hispanics. No reliable data were available for other racial groups.
Overall, the number of U.S. fentanyl-related deaths in 2011 and 2012 hovered just above 1,600. A sharp increase began in 2013, reaching 18,335 deaths in 2016. That’s up from 0.5 deaths per 100,000 people in 2011 to 5.9 per 100,000 in 2016.

In the first three years of the data, men and women died from fentanyl-related overdoses at similar rates, around 0.5 per 100,000. But in 2013, those paths diverged, and by 2016, the death rate among men was 8.6 per 100,000; for women it was 3.1 per 100,000. Overdose death rates rose most sharply along the East Coast, including in New England and the middle Atlantic, and in the Great Lakes region.

One of the most powerful opioids, fentanyl has been around for decades and is still prescribed to fight pain. But it has emerged as a street drug that is cheap to make and is found mixed into other drugs. In 2013, fentanyl was the ninth most common drug involved in overdose deaths, according to the CDC report; in 2016, it was number one. Just a little bit can do a lot of damage: The drug can quickly kill a person by overwhelming several systems in the body (SN: 9/3/2016, p. 14).

50 years ago, scientists were unlocking the secrets of bacteria-infecting viruses

Unusual virus is valuable tool —

Viruses, which cannot reproduce on their own, infect cells and usurp their genetic machinery for use in making new viruses…. But just how viruses use the cell machinery is unknown.… Some answers may come from work with an unusual virus, called M13, that has a particularly compatible relationship with … [E. coli] bacteria. — Science News, April 5, 1969

Update
M13 did help unlock secrets of viral replication. Some bacteria-infecting viruses, called bacteriophages or simply phages, kill the host cell after hijacking the cell’s machinery to make copies of themselves. Other phages, including M13, leave the cell intact. Scientists are using phage replication to develop drugs and technologies, such as virus-powered batteries (SN: 4/25/09, p. 12). Adding genetic instructions to phage DNA for making certain molecules lets some phages produce antibodies against diseases such as lupus and cancer. The technique, called phage display, garnered an American-British duo the 2018 Nobel Prize in chemistry (SN: 10/27/18, p. 16).

Hayabusa2 has blasted the surface of asteroid Ryugu to make a crater

Hayabusa2 has blasted the asteroid Ryugu with a projectile, probably adding a crater to the small world’s surface and stirring up dust that scientists hope to snag.

The projectile, a two-kilogram copper cylinder, separated from the Hayabusa2 spacecraft at 9:56 p.m. EDT on April 4, JAXA, Japan’s space agency, reports.

Hayabusa2 flew to the other side of the asteroid to hide from debris that would have been ejected when the projectile hit (SN: 1/19/19, p. 20). Scientists won’t know for sure whether the object successfully made a crater, and, if so, how big it is, until the craft circles back. But by 10:36 p.m. EDT, Hayabusa2’s cameras had captured a blurry shot of a dust plume spurting up from Ryugu, so the team thinks the attempt worked.
“This is the world’s first collision experiment with an asteroid!” JAXA tweeted.

Hayabusa2 plans to briefly touch down inside the crater to pick up a pinch of asteroid dust. The spacecraft has already grabbed one sample of Ryugu’s surface (SN Online: 2/22/19). But dust exposed by the impact will give researchers a look at the asteroid’s subsurface, which has not been exposed to sunlight or other types of space radiation for up to billions of years.

If all goes as planned, Hayabusa2 will return to Earth with both samples in late 2020. A third planned sample pickup has been scrapped because Ryugu’s boulder-strewn surface is so hazardous for the spacecraft.
Comparing the two samples will reveal details of how being exposed to space changes the appearance and composition of rocky asteroids, and will help scientists figure out how Ryugu formed (SN Online: 3/20/19). Scientists hope that the asteroid contains water and organic material that might help explain how life got started in the solar system.